<Previous Lesson

E-Commerce

Next Lesson>

Lesson#21

FIREWALLS

FIREWALLS

A firewall is a combination of hardware and software that sits between the internet and internal network of an organization to protect the network from outside attack (Fig. 1). It can examine the data entering or leaving from the network and can filter the data according to certain rules, thus, protects the network from an attack. There are three main types of firewalls detailed as follows: Fig. 1

Packet filter firewall

It uses a set of rules to determine whether outgoing or incoming data packets are allowed to pass through the firewall. For example, we can, as a rule, specify IP addresses of sending devices such that packets from these IP addresses are not allowed to enter the network. The Firewall would stop them from entering. A packet filter firewall is the simplest type of firewalls which operates at data link and network layers of the OSI model.

Circuit level firewall

It is quite similar to the packet filter firewall. It also works on the basis of a set of rules for filtering packets but operates at the transport layer of the OSI Model so has greater functionality. As a rule, the higher the layer of OSI model where a firewall operates, the more sophisticated is the firewall. It can make packets sent from internal network to a destination outside the firewall appear as if they originated at the firewall. Thus information regarding hosts on the internal network remains secret. It can also determine whether TCP/IP connection between a host and a machine outside firewall has been properly established. Thus it can cut off any connection which has been hijacked by a hacker trying to pass through the firewall.

Application gateway firewall

It operates at application layer of the OSI Model. It uses strong user authentication to verify identity of a host attempting to connect to the network using application layer protocols such us FTP. In contrast to packet filter firewall, it filters the requests rather than packets entering/leaving the network. It can block any outgoing HTTP or FTP requests. It can prevent employees of a company inside a firewall from downloading potentially dangerous programs from the outside. In other words, this type of firewall is used

97 to control connections thus employees of a company can be restricted from connecting to certain web sites. We can combine circuit level capabilities with application gateway services to form Hybrid type of a firewall.

Proxy server

A proxy server sits between an internal trusted network and the untrusted network, that is, internet,

as you can see in Fig. 2 below.

Fig. 2 Mainly, it can do three things: An http request from the browser goes to proxy server. It can affix its own IP address instead of IP address of the requesting machine; thus, it hides the information of the host. It downloads the requested page itself and afterwards supplies it to the user. It can also act as a firewall filtering requests for certain web pages. An important job it can do is to speed up the processing of http requests by caching web pages. Caching means that it can store the requested web pages in its memory (cache memory) for a certain period. The advantage of caching is that for subsequent web page requests the time of supply of the web pages is reduced. Instead of sending the request to actual web server, the proxy server can quickly supply the web page stored in its cache memory, thus, it saves the time of downloading the page.

Virtual private network (VPN)

Suppose that a client is sitting at a local branch network of a company and wants to become part of a bigger, head office network of that company located far away. One option for him is to set up a dial up connection, which means that he can be connected to a server machine lying in the head office network through a direct telephone line. That server machine may be called a

Remote Access Server (RAS)

and the client may be called a

Remote Access Client (RAC).

Remote access is a two way process so both RAS and RAC must be configured, first. Some windows operating systems provide the facility to configure the RAS and RAC. Basically, the client specifies the phone no. of RAS while configuring. After both RAS and RAC are configured, the client enters identification information (password etc.) and clicks at “Dial”. Accordingly, phone no. of RAS is dialed and connection with RAS is setup. Once clients are connected to RAS, they can access the remote company network and its resources – servers, printers etc. A protocol,

98 Point to Point Protocol (PPP), is used to set up the dial up connection between RAC and RAS for exchange of data packets. A VPN provides another option of remote access. It is defined as a secure, dedicated point to point connection over the internet. In VPN we use internet infrastructure for connection instead of a special telephone line. Both RAS (also called tunnel server) and RAC (also called tunnel client) are connected to the internet. Initially, both are configured for VPN. IP address of tunnel server must be specified during the configuration of tunnel client (instead of phone no.). The option of VPN is available if we explore the menu ‘Internet Options’. We can enable VPN, thus. Similarly, tunnel server should also be configured so that a client’s request for access can be authenticated. VPN connections or tunnels are managed by Point to Point Tunneling Protocol (PPTP) which due to encryption provides secure transport of private communications over the public internet. A VPN connection thus can be created between the branch office and the corporate head office. VPN is a cost saving measure as compared to simple remote access using dial up connection. In VPN one makes a local call to the ISP and then using ISP’s infrastructure, routers etc. one is connected to the internet. In other words a client can become part of the remote network through the internet. Note that a tunnel client just incurs the cost of a local call to the ISP and yet he can remain part of the remote corporate network for many hours. On the other hand, in case of dial up connection for remote access one has to pay the cost of a long distance call for as many no. of hours as one wants to be connected to the remote corporate network. This is going to be very expensive. VPN is the example of an extranet. You know that when two or more intranets are connected to each other they form an extranet. A manufacturing company thus can be connected to its suppliers of raw material and its distributors through VPN.

Security – the biggest challenge

There is a consensus that the issue of computer and data security is the biggest hurdle in the growth of ecommerce. Web servers also face this security threat. Programs that run on a server have the potential to damage databases, abnormally terminate server software or make changes in the information placed there. A number of international organizations have been formed to share information and combat security threats to computers and computer networks. The names of two such organizations are worth-mentioning: Computer Emergency Response Team (CERT) Systems Administrator, Audit, Network and Security Institute (SANS Institute) The best response that the experts have come up with to tackle the security issue is in terms of cryptography.

Cryptography

Cryptography is the technique of converting a message into unintelligible or non-understandable form such that even if some unauthorized or unwanted person intercepts the message he/she would still not be able to make any sense out of it. Cryptography is thousands of years old. Techniques used for cryptography Substitution In substitution we replace each letter in the message with another to make the message non-understandable. For example, each letter “a” in the message can be replaced with letter “d” and letter “b” with letter “e” and so on. Transposition It is based on scrambling the characters in a message. A transposition system may first write a message into a table row by row then the message can be read and rewritten column by column to make it scrambled
Historically, cryptography has long been used as a military technology. Julis Ceaser used a simple transposition cipher to scramble messages to give instructions to his commanders in the battlefield. Similarly, Hitler used Enigma encryption cipher to scramble messages sent by radio to German armies and u-boats during the Second World War. Cryptography has also been used for non-military purposes over the centuries. There are records of people using cryptography to protect religious secrets and to hide secrets of science and industry. In recent years, the use of cryptography in business and commerce appears to have surpassed its earlier use. It has made the rapid commercialization of internet possible. Without cryptography, it is doubtful that banks, businesses and individuals would feel safe doing business online.

<Previous Lesson

E-Commerce

Next Lesson>

Home

Lesson Plan

Topics

Go to Top

Next Lesson
Previous Lesson
Lesson Plan
Topics
Home
Go to Top